Solution to Problem #671

Problem:

- (a) Let A_1, A_2, A_3, A_4, A_5 be five points in the plane. Show that $2(A_1A_2+A_2A_3+A_3A_4+A_4A_5+A_5A_1) \geq A_1A_3+A_2A_4+A_3A_5+A_4A_1+A_5A_2.$
- (b) Show that the coefficient 2 in this inequality is the best possible, i.e., there are 5 points A_1, A_2, A_3, A_4, A_5 in th plane such that

$$1.9(A_1A_2 + A_2A_3 + A_3A_4 + A_4A_5 + A_5A_1) < A_1A_3 + A_2A_4 + A_3A_5 + A_4A_1 + A_5A_2.$$

Solution. By the triangle inequality, for any three points X, Y, Z in the plane $XY + YZ \ge XZ$. Therefore

$$A_1A_2 + A_2A_3 \ge A_1A_3$$
, $A_2A_3 + A_3A_4 \ge A_2A_4$ $A_3A_4 + A_4A_5 \ge A_3A_5$
 $A_4A_5 + A_5A_1 \ge A_4A_1$, $A_5A_1 + A_1A_2 \ge A_5A_2$.

Adding these 5 inequalities, (a) follows. For (b), choose points A_1 , A_2 , A_3 , A_4 , A_5 to be collinear and appear in that order on a line (see figure below). Let $A_1A_3 = A_3A_5 = a$ and $A_1A_2 = A_4A_5 = x$. Then $A_2A_3 = A_3A_4 = a - x$.

Then

$$A_1A_2 + A_2A_3 + A_3A_4 + A_4A_5 + A_5A_1 = 4a$$
 and
$$A_1A_3 + A_2A_4 + A_3A_5 + A_4A_1 + A_5A_2 = 8a - 4x.$$

For any p<2, the inequality $p\cdot 4a<8a-4x$ us equivalent to x<(2-p)a. If we choose an x satisfying the latter inequality, for each p<2 there are 5 points A_1,A_2,A_3,A_4,A_5 in the plane such that

$$p(A_1A_2 + A_2A_3 + A_3A_4 + A_4A_5 + A_5A_1) < A_1A_3 + A_2A_4 + A_3A_5 + A_4A_1 + A_5A_2.$$

In particular, this is true for p = 1.9.