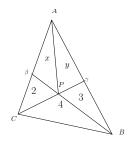
Solution to Problem #670

Problem:

Two straight lines are drawn, each from a vertex of a triangle to the opposite side. This divides the triangle into four pieces: three smaller triangles and one quadrilateral. The areas of the smaller triangle are shown in the figure above. Find the area of the quadrilateral.

Solution. Join the point of intersection P of the two given lines with the remaining vertex A. This divides the quadrilateral $A\beta P\gamma$ into two triangles $\Delta A\beta P$ and $\Delta AP\gamma$, and let their areas be x and y respectively:



The two triangles $\Delta A\beta P$ and βPC of areas x and 2 respectively share a common altitude, namely the perpendicular from P to the side AC. Therefore, using the fact that the area of a triangle if $\frac{1}{2} \times \text{base} \times \text{height}$, we have $\frac{x}{2} = \frac{\text{area} \ \Delta AP\beta}{\text{area} \ \Delta \beta BC} = \frac{A\beta}{\beta C}$. The same reasoning applied to $\Delta A\beta B$ and $\Delta \beta BC$ gives us $\frac{x+y+3}{2+4} = \frac{A\beta}{\beta C}$ so that we have $\frac{x}{2} = \frac{x+y+3}{6}$, i.e., 2x-y=3 Using the same argument with the triangles $\Delta AP\gamma$, $\Delta \gamma PB$ and $\Delta AC\gamma$, $\Delta \gamma CB$, we hav $\frac{y}{3} = \frac{A\gamma}{\gamma B} = \frac{x+y+2}{3+4}$. So we get 3x-4y=-6. Solving 2x-y=3 and 3x-4y=-6 simultaneously, we find $x=\frac{18}{5}$ and $y=\frac{21}{5}$. Therefore the area of the quadrilateral is $x+y=\frac{39}{5}$.